1) Find the component form of the vector \vec{v} and sketch the vector with its initial point at the origin.

2) Find the component form of the vectors \vec{u} and \vec{v} whose initial and terminal points are given. Show that \vec{u} and \vec{v} are equivalent.

\vec{u} : (3,2), (5,6)	$\vec{u} = \langle 2, 4 \rangle$
\vec{v} : (1,4), (3,8)	$\vec{v} = \langle 2, 4 \rangle$

3) The initial and terminal points of vector \vec{v} are (4,-6) and (3,6) respectively. Write the vector as the linear combination of the standard unit vectors \vec{i} and \vec{j} .

$\vec{v} = -\mathbf{i} + 12\mathbf{j}$
--

4) Find each scalar multiple of $\vec{v} = \langle -2, 3 \rangle$.

a) $2\vec{v}$	$\langle -4,6 \rangle$	b) $-3\vec{v}$ $\langle 6, -9 \rangle$	c) $\vec{0v}$ $\langle 0,0 \rangle$	d) $-\frac{1}{2}\vec{v}$ $\left\langle 1, -\frac{3}{2} \right\rangle$

5) Find the vector
$$\vec{v}$$
 where $\vec{u} = \langle 2, -1 \rangle$ and $\vec{w} = \langle 1, 2 \rangle$.
a) $\vec{v} = \frac{3}{2}\vec{u}$ $\left| \langle 3, -\frac{3}{2} \rangle \right|$ b) $\vec{v} = \vec{u} + \vec{w}$ $\left| \langle 3, 1 \rangle \right|$ c) $\vec{v} = \vec{u} + 2\vec{w}$ $\left| \langle 4, 3 \rangle \right|$ d) $\vec{v} = 5\vec{u} - 3\vec{w}$ $\left| \langle 7, -11 \rangle \right|$

(3,5)

6) The vector $\vec{v} = \langle -1, 3 \rangle$ and its initial point is (4, 2), find the terminal point.

7) Find the magnitude of
$$\vec{v}$$
:
a) $\vec{v} = 7\mathbf{i}$ [7] b) $\vec{v} = \langle 12, -5 \rangle$ [13] c) $\vec{v} = -10\mathbf{i} + 3\mathbf{j}$ [$\sqrt{109}$]

8) Find the unit vector in the direction of \vec{v} and verify that it has a length of 1.

a)
$$\vec{v} = \langle 3, 12 \rangle \quad \left| \left\langle \frac{\sqrt{17}}{17}, \frac{4\sqrt{17}}{17} \right\rangle \right|$$
 b) $\vec{v} = \left\langle \frac{3}{2}, \frac{5}{2} \right\rangle \quad \left| \left\langle \frac{3\sqrt{34}}{34}, \frac{5\sqrt{34}}{34} \right\rangle \right|$

a)
$$\|\vec{u} + \vec{v}\|$$
 1
b) $\|\vec{u} + \vec{v}\|$ 1

10) Find $\vec{u} + \vec{v}$. Then demonstrate the triangle inequality using the vectors $\vec{u} = \langle 2, 1 \rangle$ and $\vec{v} = \langle 5, 4 \rangle$.

$$\vec{u} + \vec{v} = \langle 7, 5 \rangle \quad \sqrt{74} \le \sqrt{5} + \sqrt{41}$$

11) Find vector \vec{v} with a magnitude of 2 and the same direction as $\vec{u} = \langle \sqrt{3}, 3 \rangle$ $\vec{v} = \langle 1, \sqrt{3} \rangle$

12) Find the component form of \vec{v} given that its magnitude is equal to 2 and the angle it makes with the positive x - axis is $\theta = 150^{\circ}$.

$$\vec{v} = \left\langle -\sqrt{3}, 1 \right\rangle$$

13) Find the component form of $\vec{u} + \vec{v}$ given that $\|\vec{u}\| = 1$, $\|\vec{v}\| = 3$ and the angles that \vec{u} and \vec{v} make with the positive x - axis is $\theta_u = 0^\circ$ and $\theta_v = 45^\circ$.

$$\left\langle \frac{2+3\sqrt{2}}{2}, \frac{3\sqrt{2}}{2} \right\rangle$$

14) Find *a* and *b* such that $\vec{v} = a\vec{u} + b\vec{w}$, where $\vec{u} = \langle 1, 2 \rangle$, $\vec{w} = \langle 1, -1 \rangle$ and $\vec{v} = \langle 2, 1 \rangle$

$$a = 1, b = 1$$

15) Find a unit vector parallel to and perpendicular to the graph $f(x) = x^2$ at the point (3,9).

$$Parallel = \pm \frac{1}{\sqrt{37}} \langle 1, 6 \rangle$$
$$Perpendicular = \pm \frac{1}{\sqrt{37}} \langle -6, 1 \rangle$$

16) Three forces with magnitudes of 75 pounds, 100 pounds, and 125 pounds act on an object at angles of 30°, 45°, and 120°, respectively, with the positive x - axis. Find the direction and magnitude of the resultant force.

$$\left\| \vec{R} \right\| \approx 385.248 \text{ newtons}$$

 $\theta_R \approx 39.6^{\circ}$

17) Use the figure below to determine the tension in each cable supporting the given load.

