1) Find the component form of the vector \vec{v} and sketch the vector with its initial point at the origin.

$$
\vec{v}=\langle 0,3\rangle
$$

2) Find the component form of the vectors \vec{u} and \vec{v} whose initial and terminal points are given. Show that \vec{u} and \vec{v} are equivalent.

$\vec{u}:(3,2),(5,6)$	$\vec{u}=\langle 2,4\rangle$
$\vec{v}:(1,4),(3,8)$	$\vec{v}=\langle 2,4\rangle$

3) The initial and terminal points of vector \vec{v} are $(4,-6)$ and $(3,6)$ respectively. Write the vector as the linear combination of the standard unit vectors \mathbf{i} and \mathbf{j}.

$$
\vec{v}=-\mathbf{i}+12 \mathbf{j}
$$

4) Find each scalar multiple of $\vec{v}=\langle-2,3\rangle$.
a) $2 \vec{v} \quad\langle-4,6\rangle$
b) $-3 \vec{v} \quad\langle 6,-9\rangle$
c) $0 \vec{v}\langle 0,0\rangle$
d) $-\frac{1}{2} \vec{v} \quad\left\langle 1,-\frac{3}{2}\right\rangle$
5) Find the vector \vec{v} where $\vec{u}=\langle 2,-1\rangle$ and $\vec{w}=\langle 1,2\rangle$.
a) $\left.\vec{v}=\frac{3}{2} \vec{u} \quad 3,-\frac{3}{2}\right\rangle$
b) $\vec{v}=\vec{u}+\vec{w} \quad\langle 3,1\rangle$
c) $\vec{v}=\vec{u}+2 \vec{w}\langle 4,3\rangle$
d) $\vec{v}=5 \vec{u}-3 \vec{w}\langle 7,-11\rangle$
6) The vector $\vec{v}=\langle-1,3\rangle$ and its initial point is (4,2), find the terminal point.

$$
(3,5)
$$

7) Find the magnitude of \vec{v} :
a) $\vec{v}=7 \mathbf{i} \quad 7$
b) $\vec{v}=\langle 12,-5\rangle$
13
c) $\vec{v}=-10 \mathbf{i}+3 \mathbf{j} \quad \sqrt{109}$
8) Find the unit vector in the direction of \vec{v} and verify that it has a length of 1 .
a) $\vec{v}=\langle 3,12\rangle \quad\left\langle\frac{\sqrt{17}}{17}, \frac{4 \sqrt{17}}{17}\right\rangle \quad$ b) $\vec{v}=\left\langle\frac{3}{2}, \frac{5}{2}\right\rangle \quad\left\langle\frac{3 \sqrt{34}}{34}, \frac{5 \sqrt{34}}{34}\right\rangle$
9) Given that $\vec{u}=\langle 1,-1\rangle$ and $\vec{v}=\langle-1,2\rangle$ find the following:
a) $\|\vec{u}+\vec{v}\|$ 1
b) $\left\|\frac{\vec{u}+\vec{v}}{\|\vec{u}+\vec{v}\|}\right\| \frac{1}{1}$
10) Find $\vec{u}+\vec{v}$. Then demonstrate the triangle inequality using the vectors $\vec{u}=\langle 2,1\rangle$ and $\vec{v}=\langle 5,4\rangle$.

$$
\vec{u}+\vec{v}=\langle 7,5\rangle \quad \sqrt{74} \leq \sqrt{5}+\sqrt{41}
$$

11) Find vector \vec{v} with a magnitude of 2 and the same direction as $\vec{u}=\langle\sqrt{3}, 3\rangle$

$$
\vec{v}=\langle 1, \sqrt{3}\rangle
$$

12) Find the component form of \vec{v} given that its magnitude is equal to 2 and the angle it makes with the positive x-axis is $\theta=150^{\circ}$.

$$
\vec{v}=\langle-\sqrt{3}, 1\rangle
$$

13) Find the component form of $\vec{u}+\vec{v}$ given that $\|\vec{u}\|=1,\|\vec{v}\|=3$ and the angles that \vec{u} and \vec{v} make with the positive x-axis is $\theta_{u}=0^{\circ}$ and $\theta_{v}=45^{\circ}$.

$$
\left\langle\frac{2+3 \sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right\rangle
$$

14) Find a and b such that $\vec{v}=a \vec{u}+b \vec{w}$, where $\vec{u}=\langle 1,2\rangle, \vec{w}=\langle 1,-1\rangle$ and $\vec{v}=\langle 2,1\rangle$

$$
a=1, b=1
$$

15) Find a unit vector parallel to and perpendicular to the graph $f(x)=x^{2}$ at the point $(3,9)$.

$$
\begin{aligned}
& \text { Parallel }= \pm \frac{1}{\sqrt{37}}\langle 1,6\rangle \\
& \text { Perpendicular }= \pm \frac{1}{\sqrt{37}}\langle-6,1\rangle
\end{aligned}
$$

16) Three forces with magnitudes of 75 pounds, 100 pounds, and 125 pounds act on an object at angles of $30^{\circ}, 45^{\circ}$, and 120°, respectively, with the positive x-axis. Find the direction and magnitude of the resultant force.

$$
\begin{aligned}
& \|\vec{R}\| \approx 385.248 \text { newtons } \\
& \theta_{R} \approx 39.6^{\circ}
\end{aligned}
$$

17) Use the figure below to determine the tension in each cable supporting the given load.

$$
\begin{aligned}
& \|\overrightarrow{C B}\| \approx 1958.1 \text { pounds } \\
& \|\overrightarrow{C A}\| \approx 2638.2 \text { pounds }
\end{aligned}
$$

